On the Information Content of 2D and 3D Descriptors for QSAR
نویسنده
چکیده
Com o objetivo de melhor entender as informações paramétricas contidas em descritores bidimensionais (2D) e tridimensionais (3D), os escores de 87 descritores 2D e 798 variáveis 3D (ALMOND) obtidos de uma série de 5998 compostos de interesse em química medicinal, foram analisados através de análise de componentes principais. A fração de variância explicada (r) e a validação cruzada (q) para sete grupos, em duas componentes PLS, foram de 40%. Uma análise individual dos componentes, mostra que as duas primeiras PCs obtidas a partir dos descritores 2D estão relacionadas com a primeira e terceira PCs dos descritores 3D. A primeira componente 3D é explicada (61%) por descritores relacionados ao tamanho, enquanto que o conteúdo da terceira é essencialmente hidrofóbico, mas com pequena variância (25%). Surpreendentemente, descritores relacionados a ligações hidrogênio não contribuíram de forma significativa para a análise final. Estes resultados não permitem, a priori, a escolha de um método em detrimento de outro, quando da realização de estudos em QSAR.
منابع مشابه
Comparison of Different 2D and 3D-QSAR Methods on Activity Prediction of Histamine H3 Receptor Antagonists
Histamine H3 receptor subtype has been the target of several recent drug development programs. Quantitative structure-activity relationship (QSAR) methods are used to predict the pharmaceutically relevant properties of drug candidates whenever it is applicable. The aim of this study was to compare the predictive powers of three different QSAR techniques, namely, multiple linear regression ...
متن کاملComparison of Different 2D and 3D-QSAR Methods on Activity Prediction of Histamine H3 Receptor Antagonists
Histamine H3 receptor subtype has been the target of several recent drug development programs. Quantitative structure-activity relationship (QSAR) methods are used to predict the pharmaceutically relevant properties of drug candidates whenever it is applicable. The aim of this study was to compare the predictive powers of three different QSAR techniques, namely, multiple linear regression ...
متن کاملQSAR Modeling Using Chirality Descriptors Derived from Molecular Topology
Topological descriptors of chemical structures (such as molecular connectivity indices) are widely used in Quantitative Structure-Activity Relationships (QSAR) studies. Unfortunately, these descriptors lack the ability to discriminate between stereoisomers, which limits their application in QSAR. To circumvent this problem, we recently introduced chirality descriptors derived from molecular gra...
متن کاملQSAR, Docking and Molecular Dynamics Studies on the Piperidone-grafted Mono- and Bis-spiro-oxindole-hexahydropyrrolizines as Potent Butyrylcholinesterase Inhibitors
ABSTRACT: Quantitative structure-activity relationship (QSAR) study on the piperidone-grafted mono- and bis-spirooxindole-hexahydropyrrolizines as potent butyrylcholinestrase (BuChE) inhibitors were carried out using statistical methods, molecular dynamics and molecular docking simulation. QSAR methodologies, including classification and regression tree (CART), multiple linear regression (MLR),...
متن کاملPredictive Modeling of Phenylpiperazine Derivatives for Renin Inhibition.
The renin–angiotensin–aldosterone system is the well established endocrine system having significant role in preserving hemodynamic stability. Renin is secreted from the juxtaglomerular cells of the kidney. Phenylpiperazine derivatives have been reported as human renin inhibitor. To perform predictive QSAR modeling for 27 phenylpiperazine derivatives as renin enzyme inhibitors. The IC50 values ...
متن کامل